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Relationship between current response and time in ion
transport problem including diffusion and convection.

1. An analytical approach
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The mathematical models of the ion transport problem in a potential field are ana-
yzed. Ion transport is regarded as the superposition of diffusion and convection. In the
case of pure diffusion model the classical Gottrell’s result is studied for a constant as
well as for the time dependent Dirichlet data at the electrode. Comparative analysis of
the current response ID = ID(t) and the classical Gottrellian IG = IG(t) is given
on the obtained explicit formulas. The approach is extended to find out the current
response Ic = Ic(t) corresponding to the diffusion-convection model. The relationship
between the current response Ic = Ic(t) and Gottrellian IG = IG(t) is obtained in
explicit form. This relationship permits one to compare pure diffusion and diffusion-
convection models, including asymptotic behaviour of current response and an influ-
ence of the convection coefficient. The theoretical result are illustrated by numerical
examples.
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1. Introduction

Mathematical modeling of kinetics and mass-transfer in electrochemical
events, even in their simplest statement, generally consists of dealing with vari-
ous physico-chemical parameters, as well as complicated mathematical problems.
In this study we analyse the matematical model of mass and charge transport
in a controlled potential experiment in electrochemistry, called chronoamperom-
etry [1–14]. In the case of two-species (oxidized and reduced species) migrating
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under the influence of the electric field, the mathematical model and governing
equations are derived in [1]. This model assumes that the charge flux arises from
only diffusion and migration of ions under the influence of the electric field,
neglecting the convection, although the ion transport needs to be regarded as a
superposition of these three parameters. But even in this, simple from the physi-
co-chemical point of view, model the obtained nonlinear parabolic problem with
unknown coefficient and nonlocal additional condition is new in mathematical
literature and enough complicated [1,15,16]:

⎧
⎪⎪⎨

⎪⎪⎩

ut = (g(u)ux )x + q ′(t)h(u)x , (x, t) ∈ R+ × R+, R+ := (0, +∞),

u(x, 0) = 0, x ∈ R+,

u(0, t) = 1, t ∈ R+,

q(t) = ∫ ∞
0 u(x, t)dx .

To the best of our knowledge, this problem, interesting also from the point
of view nonlocal inverse/optimal control problems, is not still solved neither
mathematically, nor numerically. The only similarity solution of this problem
is studied in [15,16], where a variational approach with the conservative finite
difference scheme was presented.

The present work is a part of wider research on the analysis of the rela-
tionship between current response and time, in ion transport problem including
diffusion and convection. The presentations of several aspects of the mass and
charge transport of the reduced species in a controlled potential experiment are
arranged in the analytical and numerical parts. In this part mathematical model
including the convection factor is studied.

In the next section the classical mathematical model, including only diffu-
sion parameter, of chronoamperometry for electroactive species migrating under
the influence of the electric field is derived. The relationship between current
response and time for the model including diffusion and convection is derived
in section 3. In the final section 4 the comparative stability analysis of the con-
sidered models is demonstrated.

2. Gottrell’s model and Cohn’s relationship

To derive Gottrell’s model of mass and charge transport in a controlled
potential experiment, i.e. in chronoamperometry, we denote by u = u(x, t), D >

0 and c > 0, the concentration, diffusion and convection of the reduced species.
In the considered model is assumed that there is an electrode at x = 0, and a
medium containing mobile ions and electroactive species in the one-dimensional
motion from the electrode to x = ∞. A potential E introduced at the initial
time t = 0 causes a reduced fraction of the oxidized species at the surface of the
electrode. As oxidized species are reduced at the surface of the electrode, its con-
centration decreases, and the conentration u = u(x, t) of the reduced species at
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the electrode increases. As a result there arises two diffusion processes: oxidized
species diffuse in toward x = 0, and the reduced species, out into the medium.
Therefore ion transport here can be regarded as a superposition of diffusion,
which is the random motion of small particles immerse in the medium, migra-
tion, which is a motion under the influence of an electric field, and convecion,
which is a hydrodynamic flow. Exchange of electrons between the surface of the
electrode and electroactive species in the time t > 0 gives rise to the current
response I = I(t), which is related to the concentration of reduced species by
the equation

∫ ∞

0
u(x, t)dx = 1

nF Se

∫ t

0
I(τ )dτ. (1)

Here n is the number of electrons gained by an ion upon reduction, F is
Faraday’s constant and Se is the surface of the electrode. The total charge car-
ried by the reduced species is

Q(t) =
∫ t

0
I(τ )dτ. (2)

These two definitions permit one to define the total charge Q(t) via the
concentration u = u(x, t) of the reduced species:

Q(t) = nF Se

∫ ∞

0
u(x, t)dx . (3)

As was established experimentally [6], for extremely high voltage perturba-
tion, the concentration of oxidized species at the electrode drops immediately to
zero, and, at the same time t = 0, the concentration u = u(x, t) of the reduced
species at the electrode (x = 0) is made to jump from zero to u0/zr. Here zr
and z0 is the valences of the reduced and oxidized species, which assumed to be
integers of the same sign. The process of perturbing the voltage in this manner
and studying the resulting current response IG = IG(t) as a function of time is
known as chronoamperometry [2]. In the case of purely diffusive flux of electroac-
tive species, the first relationship between the time t > 0 and the current response
IG has been experimentally obtained in 1902 by Gottrell. He was found that the
current reponse is proportional to 1/

√
t :

IG ∼ 1/
√

t .

This relationship is defined as Gottrellian. The theoretical approval of this
result based on the purely diffusive mathematical model

⎧
⎨

⎩

ut = Duxx , (x, t) ∈ R+ × R+, R+ = (0, +∞),

u(x, 0) = 0, x ∈ R+,

u(0, t) = u0/zr, t ∈ R+
(4)
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was obtained by Cohn in [1]. The analytical formula otained here for Gottrellian
is as follows:

IG(t) = nF Seu0

zr

√
D

π t
. (5)

In order to save the completeness of our study we will derive the same formula
(5), but by slightly different way.

The solution u = u(x, t) of the initial boundary value problem (4) can be
obtained from the solution

v(x, t) = c0 er f
(

x

2
√

Dt

)

(6)

of the basic parabolic problem

⎧
⎨

⎩

vt = Dvxx , (x, t) ∈ R+ × R+,

v(x, 0) = c0, x ∈ R+,

v(0, t) = 0, t ∈ R+,

introducing here the new function [17]:

u(x, t) = c0 − v(x, t). (7)

The function u = u(x, t) also satisfies the parabolic equation (5) and the
following conditions:

u(x, 0) = c0 − v(x, 0) = 0,

u(0, t) = c0 − v(0, t) = c0 .

Substituting here c0 = u0/zr we obtain that the function u = u(x, t), given by
(7), is the solution of problem (4). Due to (6) and (7) this solution is as follows:

u(x, t) = u0

zr
er fc

(
x

2
√

Dt

)

. (8)

Here

er f(z) =
√

π

2

∫ z

0
exp(−y2)dy, er fc(z) = 1 − er f(z),

are error and complementary error functions.
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Taking into account definitions (1)–(3) we can calculate Gottrellian as fol-
lows:

IG(t) := Q′(t) = 2√
π

nF Seu0

zr

∫ ∞

0

∂

∂t

{∫ ∞
x

2
√

Dt

exp(−z2)dz

}

dx

= 2√
π

nF Seu0

zr

∫ ∞

0

{
x

4
√

Dt
exp(− x

2
√

Dt
)

}

dx

= 1√
π

nF Seu0

zr

√
D

t

∫ ∞

0
exp(−(

x

2
√

Dt
))d

(

−(
x

2
√

Dt
)2

)

= nF Seu0

zr

√
D

π t
,

which is Cohn’s result [1].

3. The model including diffusion and convection

We consider the same physico-chemical model (1) adding the convection
term cux , c > 0:

⎧
⎨

⎩

ut = Duxx − cux , (x, t) ∈ R+ × R+,

u(x, 0) = 0, x ∈ R+,

u(0, t) = u0/zr , t ∈ R+
(9)

In this section we are going to find out an influence of the convective term
−cux to the relationship I = I(t).

Introducing the new function

w(x, t) = exp
(

− ν√
D

x + ν2t

)

u(x, t), ν = c

2
√

D
, (10)

we can show that the function w = w(x, t) satisfies the initial boundary value
problem

⎧
⎨

⎩

wt = Dwxx , (x, t) ∈ R+ × R+,

w(x, 0) = 0, x ∈ R+,

w(0, t) = µ(t), t ∈ R+,

(11)

with the time dependent Dirichlet data

µ(t) = u0

zr
exp(ν2t), (12)

when the function u = u(x, t) is the solution of problem (9).
The auxiliary problem (11) with the given boundary concentration µ(t) at

x = 0 can be handled seperately. This model corresponds to the exponentially
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given concentration of reduced species at x = 0. The solution of this problem is
the integral [17]

w(x, t) =
∫ t

0

∂

∂t
er fc

(
x

2
√

D(t − τ)

)

µ(τ)dτ.

Substituting here (12) we can find the function w(x, t):

w(x, t) = u0 x

2zr
√

π D

∫ t

0

1
(t − τ)(3/2)

exp

(

− x2

4D(t − τ)

)

exp(ν2τ)dτ. (13)

By definition (3) we can find the corresponding total charge:

Q(t) = nF Seu0

2zr
√

π D

∫ t

0

1√
t − τ

exp(ν2τ)

{∫ ∞

0

x

t − τ
exp

(

− x2

4D(t − τ)

)

dx

}

dτ

= nF Seu0
√

D

zr
√

π

∫ t

0

1√
t − τ

exp(ν2τ)dτ.

Since
∫ t

0

1√
t − τ

exp(ν2τ)dτ =
√

π

ν
exp(ν2t)er f(ν

√
t)dτ,

we get

Q(t) = nF Seu0
√

D

zrν
exp(ν2t)er f(ν

√
t), ν = c

2
√

D
.

Calculating the first derivative of the function Q(t) we obtain the current
response in the following form:

ID(t) = nF Seu0

zr

√
D

π t
+ nF Seu0c

2zr
exp(ν2t)er f(ν

√
t). (14)

The obtained function ID = ID(t) expresses the dependence of the cur-
rent response on time, when the concentration of the reduced species at the elec-
trode (x = 0) is made jump from zero to u0 exp(ν2t)/zr exponentially, during the
experiment. The first term of the right hand side is exactly the same with Got-
trellian, given by (5), i.e. Ic(t) = IG(t) for c = 0. The second right hand side
term in (14) shows an influence of the concentration µ(t) at the electrode, since

nF Seu0c

2zr
exp(ν2t)er f(ν

√
t) = 1

2
nF Se c µ(t)er f(ν

√
t),

as well as convective factor c > 0 at the initial point x = 0.
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Let use now the above auxiliary problem (11) to derive the current response
Ic = Ic(t) in the presence of the convective factor. For this first aim we use for-
mulas (10) and (13) to derive the solution u = u(x, t) of the parabolic problem
(9) in the explicit form. We have

u(x, t)= u0 x

2zr
√

π D
exp

(
ν√
D

x−ν2t

) ∫ t

0
(t−τ)−3/2 exp

(

− x2

4D(t−τ)

)

exp(ν2τ)dτ.

Using definition (3) for the total charge we get

Qc(t) = nF Seu0

2zr
√

π D

∫ t

0

−ν2(t − τ)

(t − τ)−3/2

{∫ ∞

0
x exp

(

− x2

4D(t − τ)
+ ν√

D
x

)

dx

}

dτ.

Calculating the integral

∫ ∞

0
x exp

(

− x2

4D(t − τ)
+ ν√

D
x

)

dx = 2D(t − τ)

+c
√

π D(t − τ)3/2[1 + er f(ν
√

t − τ)],
we have

Qc(t) = nF Seu0
√

D

zr
√

π

∫ t

0
(t − τ)−1/2 exp(−2ν2(t − τ)dτ

+nF Seu0c

2zr

[

t +
∫ t

0
er f(ν

√
t − τ) dτ

]

.

By the change of variables z = t − τ we transform the left hand side as follows:

Qc(t) = nF Seu0
√

D

zr
√

π

∫ t

0
z−1/2 exp(−2ν2z)dz + nF Seu0c

2zr

[

t +
∫ t

0
er f(ν

√
z)

]

dz].

After the differentiating the right hand side, by the definition Ic(t) := Q′(t),
we obtain the current response corresponding to the model with convective term:

Ic(t) = nF Seu0

zr

√
D

π t
exp(−2ν2t) + nF Seu0

2zr
c[1 + er f(ν

√
t)], t > 0. (15)

Let us compare the current response Ic(t), obtained in the presence of
convection, with Gottrellian, given by (5). Evidently for c = 0, Ic(t) = IG(t).
Further, introducing the parameter λ := (nF Seu0)/zr, which characterizes the
physico-chemical constants n, F, Se, and the concentration u0/zr of the reduced
species on the electrode at t = 0. Then rewriting (15) in the form

Ic(t) = exp(−2ν2t)IG(t) + λ
c

2
[1 + er f(ν

√
t)], ν = c

2
√

D
, t > 0, (16)
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we obtain the relationship between the current response Ic(t) and the classi-
cal Gottrellian IG(t), also an influence of the convection coefficient c > 0.
Thus relationship (16) shows deviation from the classical Gottrelian, and provide
information about complex chemical kinetics, in particular, kinetics of heteroge-
neous ion transfer.

4. Numerical experiments and interpretations

The numerical experiments below are of two groups. In the first series of
numerical experiments pure diffusion model is considered. The classical Gottrel-
lian is compared with the current response ID(t), corresponding to the pure
diffusion model with time dependent boundary concentration µ(t), at x = 0.
As was noted above, in classical chronoamperometry the concentration of the
reduced species at the point x = 0 made jump from zero to u0/zr. In this
case the current response is Gottrellian. The case, when the concentration of the
reduced species at the point x = 0 increases exponentially by increasing the time,
can be described by the pure diffusive model (11). In this case, as shows formula
(14), the current response and relationship ID ∼ t includes additional term

nF Seu0c

2zr
exp(ν2t)er f(ν

√
t) = nF Seν

√
Dµ(t) er f(ν

√
t).

Assuming in (12) the parameter ν independent, in particular on the coeffi-
cient c > 0, we can conclude that in the case of the time dependent boundary
concentration at x = 0, the dependence I ∼ t is not Gottrellian, and has the
character

I ∼ 1√
t

+ µ(t).

Figure 1 shows the deviations ID(t) − IG(t) in the current responses corre-
sponding to constant and exponentially time dependent boundary data at x = 0.
By increasing the time this deviation increases. This figure also shows the asymp-
totic behaviour of the current response ID(t), depending on the diffusion coeffi-
cient D and the parameter ν. Therefore the boundary data µ(t) has also an
important rule in the relationship ID ∼ t .

Let us consider now the pure diffusion and diffusion-convection model (9).
The main distinguished feature in the behaviour of the current response Ic(t)
here is that it doesn’t tends to zero as time increases. Indeed, since er f(z) ≈ 1
for z > 3, there exstis a time t = T , for large time

Ic(t) = exp(−2ν2t)IG(t) + λc, λ := nF Seu0

zr
, t > T . (17)
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Figure 1. Comparison current responses and Gottrellian for different Dirichlet data: D=1,
λ/

√
π = 1.

Hence the function Ic(t) exponentially decays and tends to the value λc as t →
∞:

lim
t→∞ Ic(t) = λc.

Figure 2 shows comparative analysis between the classical Gottrelian IG(t)
and the current responses Ic(t) for diffusion-convection model. For small values
of the convection coefficient c > 0 the deviation Ic(t) − IG(t) in the current
responses is small enough. Thus for c = 0.1 in the time interval (0, 10) the abso-
lute sup-norm error is

‖Ic − IG‖L∞[0.10] = 0.088.

However this error essentially increases by increasing the convection coefficient
c > 0, as shows figure 2.

5. Conclusions

An analytical approach has been developed for the parabolic initial value
problem arising in ion transport problem in a controlled potential experiment.
The main theme of the study is to study behaviour of the current response
depending on time, and a relationship between current responses corresponding
to pure diffusion and diffusion-convection models. It is foud out that even in
the case of pure diffusion model, the current response differs from the classi-
cal Gottrellian, if the concentration of the reduced species on the electrode at
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Figure 2. Current responses corresponding to pure diffusion and diffusion-convection models:
D = 1, λ/

√
π = 1.

the initial time is not constant. Extending the given approach for the diffusion-
convection model the explicit analytical formula for the current response Ic is
obtained. Then the relationship between the current response Ic and the classi-
cal Gottrellian IG is derived. This relationship shows the degree of influence of
the convection factor to the current response Ic, permits to estimate the asymp-
totic behaviour of the current response.
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